. i ital .-"r T T e e
d I :::sgtr[.“mtg .\ CCLD) Support Note 316, Revision A

Metroiogy Group

NanoLithography

316.1 Overview

This support note details NanoL ithogr aphy theory, NanoScript™ syntax for performing lithography
commands and procedures to test, build and run NanoL ithography programs.

Refer to the following sections for using your NanoL ithography Package:

¢ New NanoLithography Package: Section 316.2 on Page 2
» Package Contents: Section 316.2.1 on Page 2
e Termsand Definitions: Section 316.2.2 on Page 3
¢ NanoLithography Theory: Section 316.3 on Page 5
e Proceduresto Perform NanoLithography: Section 316.4 on Page 8
e Testing Your System [LithoHelloworld.dll]: Section 316.4.2 on Page 9
e Testing Your System [Diamond.dll]: Section 316.4.3 on Page 15
¢ Modifying a Lithography Program: Section 316.4.4 on Page 19
e Writing a New Lithography Program: Section 316.4.5 on Page 24
e Exporting Older Programsinto Version 5.12 or Later: Section 316.4.6 on Page 30
e PerformanceTips: Section 316.4.7 on Page 31
e Sample Programs Overview: Section 316.5 on Page 33
¢ NanoScript Macros: Section 316.6 on Page 37
¢ Litho.h Functions. Section 316.7 on Page 38
e Gui.h Functions; Section 316.8 on Page 46

Document Revision History: NanoLithographyy

Revision Date Section(s) Affected Reference Approval
A 11-12-01 New Release DRF 0426 C. Fitzgerad
L. Fukunaga
© Digital Instruments Veeco Metrology Group, 2001 Part Number: 013-316-000

112 Robin Hill Road
Santa Barbara, CA 93117
805.967.1400

New NanoLithography Package
Package Contents

316.2 New NanoLithography Package

Scanning Probe Microscope (SPM) Lithography or NanoL ithography functions are now availablein
an optional package. The NanoL ithography enhancements include:

e Building custom lithography programs
e Building (and debugging) larger programs to control the NanoScope.
The new package includes an industry standard compiler as well as three sample templatesto

successfully test and run your Lithography programs. The program files are in the form of dynamic-
link library (DLL) filesfor loading in to the NanoScope system software.

316.2.1 Package Contents

The optional NanoL ithography package includes:

e This Support Note [New]—Detailing NanoL ithography theory, Macro language
commands, procedures and sample programs for use as templates.

e Compiler [New]—An industry standard, C/C++ compiler to build dynamic link
libraries (DLL).

Note: The current compiler is Microsoft ® Visual C++ Standard Edition™, Version 6.0.

e gui.h [New]—File of the graphical user interface (GUI) functions to add dialog boxes,
messages and notes, etc. for user input.

e litho.h—File of Lithography function declarations (i.e., functionally the same as previous
versions) to run the basic lithographic functions.

e zlib—Library of NanoScope functions (i.e., linked in to your program).

e Sample Programs—Three sample programs to test, modify and write Lithography
programs.

2 NanoLithography Rev. A

New NanolLithography Package
Terms and Definitions

316.2.2 Terms and Definitions

In order to understand the processes detailed in this support note, it may be helpful to become familiar
with specific terms:

Table 316.2a NanoLithography Terms and Definitions

Term

Definition

Compiler

The compiler (i.e., Visual C++ Studio compiler) is responsible for
building the project filesin to a dynamic link library (DLL) file.
Visual C++ provides an Integrated Devel opment Environment (IDE)
that allows you to write, build, and debug C/C++ programs (i.e., the
basisfor Lithography programs). The compiler environment also
provides easy navigation of your source code.

Dynamic Link
Libraries
(DLL)

A dynamic-link library (DLL) is an executable file that actsas a
shared library of functions, which contain one or more commands
that are compiled, linked, and stored separately. DLLs also facilitate
the sharing of data and resources. The NanoScope software searches
and loads the DLL file to run the Lithography program.

Header Files

(*-h)

Header Files or "Include Files" contain the C/C++ declarations of
the functions you use for NanoScript or lithography. In the C/C++
environment, functions must be declared before they are used. Your
macro source file must explicitly include the header file that con-
tains the function you want to call. (ex. "#include <litho.h>").
Litho.h in this example includes all the NanoScope lithography
functions that are available. If you want to call GUI functions,
include gui.h. (ex. "#include <gui.h>") These header files should be
located in the Include subdirectory in the SPM folder.

NanoScript
Language

NanoScript isafully C-capable language extension that includes
over 200 library functions written by Digital Instruments’ program-
mers. For further details, see NanoScript M acros: Section 316.6 on

Page 37.

Project

A project issimilar to afolder. It consists of a set of files, which act
together to perform the Litho functions (See Figure 316.23a).

Source Files

In the Microsoft Project files, the sourcefilesinclude the NanoScript
Language information. When selected, code isvisiblein the right
window to verify, edit or modify the NanoL ithography settings. The
source files contain exported functions (i.e., _declspec modifier),
internal functions, and output functions for the DLL.

Workspace

A window in the C++ compiler that consists of a set of objects, files
and folders. The folders contain specific project information for the
Lithography program. Figure 316.2a displays a workspace.

Rev. A

NanoLithography

New NanoLithography Package

Terms and Definitions

Term

Definition

Workspac

Zlib

A library of NanoScope functions (i.e., linked in to your program).
Thisimport library (Z.L1B) file contains information that the link
(Project > Settings > Link tab) needs for resolving external refer-
encesto exported DLL functions. The purposeisfor the system to
locate the loaded DLL file and then export the NanoScope Lithogra-
phy functionsin real time mode.

For example, to call the AskOK function, you must link the code
with the import library Z.LIB. The reason isthat AskOK residesin
the NanoScope system DLL. Thefile Z.LIB isthe import library
used to resolve the call to apply the ASkOK command in your code.

Figure 316.2a Workspace and Project Files

*. lithoHelloWaorld - Microsoft Visual e+ - [lithoHelloWorld cpp]

iEI file Edt Mew |nsert Project Buld Tools Mindow Help

| SE® &R o B R ™
_| = o[¢ macrovie: ERS
% {‘IFI lithoeHel loWarld dems masro
wnkapsce lithoHa! o
. : H#include <litho.h>
(& lithaHalloWorld fil C#-..-.c lude <gui.h ><

FH_3 Source Filgs
[#) ithobslloivion
] Haader Files
_1 Rasourca Files
-] Extamel Dapanda

*h
Files

erxtern "C" _ declspec(dllexport] int macroi

{

Send debuy statement To debug windos

Debug (“lithoeHel loWorld called-~n'):
Fut up & GUI dialog

AgkDk ["Lithe™, "Hella World!™]:
Hain lithography sectioo

LITHO _EBEGIH

L] Fut wvour litha functlions here

File View

Source File View

| 7216

NanoLithography

Rev. A

NanoLithography Theory
Mechanical Properties

316.3 NanolLithography Theory

The NanoL ithography feature allows for performing movements in nano scale areas. The lithography
programs direct the microscope to inscribe or move items on the sample surface. Figure 316.3a shows an
STM (Scanning Tunneling Microscopy) lithograph of concentric shapes (i.e., polygon and circles) on a
poly carbonate. This lithography uses a specially designed scanner called a Closed L oop XY scanner.

Note: For additional information on using a Closed Loop XY scanner, contact your Digital
Instruments, Veeco Metrology Group representative.

Figure 316.3a Lithography Image

= - ¥ Tl
fﬁ

¥
L] Kk % B
L]

0.0 5.0 pm | |

724

Image is Courtesy of Debra Cook,
Application Scientist, Digital Instruments,
Veeco Metrology Group

316.3.1 Mechanical Properties

NanoL ithography consists of using the tip as an electro or mechanical tool to scribe (indent or create a
ditch) on various material surfaces. Lithography uses C programming language along with NanoScript™
macro Litho functions to manipulate the tip relative to the sample surface.

The area Scan size (Real Time > Scan Controls > Scan Size parameter setting) defines the allowable
dimensions of your Lithographic image(s). There are no safeguards to guarantee against tip or surface
damage. To allow for full control of your Lithography functions, you must carefully define the physical
limits, then execute commands which do not exceed those limits. In selected instances, the software
warns you when executing commands beyond limitsin the X-Y plane (e.g., trying to move the tip outside
the bounds of the maximum Scan size). Most commands assume thetip iswithin its physical limits, such
aswhen the tip is plunged into a surface, then dragged through material.

Rev. A

NanoLithography 5

NanoLithography Theory
Mechanical Properties

Applications

Lithography programs may be run in Scanning Tunneling Microscopy (STM), Contact Atomic Force
Microscopy (AFM), and TappingMode AFM. Each mode produces its own unique results.

STM. Scanning Tunneling Microscopy (STM) can be used to modify surfaces at the nano scale level.
By applying voltage pulses (e.g., see LithoPulse: Section 316.7.12 on Page 42) of varying magnitude
and frequency, structures can be created. By programming the tip to movein a pre-determined fashion,
you can also indent the surface.

Selecting an SPM Mode and Probe for Nanolithography

There are many SPM techniques for modifying a surface using Nanolithography. Some techniquesrely
on mechanical (contact) interactions between the probe and the sample; othersrely on an electrical
current flowing between the probe and the sample; yet others use magnetic interactions; and the list
grows with every user. The choice of the SPM technigue and probe depends on the sample and the
desired results.

NanoLithography isarapidly evolving field of research. The best source of information on the choice
of probes and techniques is peer-reviewed technical literature and other technical journals and
websites.

Note: For asamplelist of the probes available from Digital Instruments,Veeco Metrology

Group, see also The Command Reference Manual Version 5.12B, Appendix A - Tip
Selection Guide as well as your system manuals.

Example: Scribing with the Lithography Program

In this Sample #2: Diamond program, the tip plunges 20 nm into the surface after moving 10 pm from
the center of the scan field creating a diamond with sides of 20um.

Figure 316.3b LithoTranslate Movement
10pm _ _

Image center

< Start Lithography

The macro command, LithoTranslate, moves thetip from center, then to the three 0’ clock position,
then moves counterclockwise to the twelve o’ clock position at a set rate of 20 um/s. The tip then
continues to draw the additional sides of the diamond shape on the sample surface.

6 NanoLithography Rev. A

NanoLithography Theory
Mechanical Properties

Figure 316.3c shows a diamond-shaped lithography pattern on a poly carbonate sample using a

standard scanner. See Section 316.5.2 (i.e., sample program: Diamond.dll) to perform this
lithography shape.

Figure 316.3c Diamond-shaped Lithography Image

7246

To perform NanoLithography, please refer to Proceduresto Perform NanoL ithography: Section
316.4 on Page 8.

Rev. A

NanoLithography

Procedures to Perform NanoLithography
What You Will Need

316.4 Procedures to Perform NanoLithography

This section detail s the setup and load of a sample lithography program provided with your
NanoL ithography package. The objective isto practice the procedures thoroughly in order to understand
additional NanoLithography program procedures.
Refer to the following sections to perform NanoL ithography on your NanoScope system:
¢ What You Will Need: Section 316.4.1 on Page 8
e Testing Your System [LithoHelloWorld.dll]: Section 316.4.2 on Page 9
e Testing Your System [Diamond.dll]: Section 316.4.3 on Page 15
¢ Modifying a Lithography Program: Section 316.4.4 on Page 19
e Writing a New Lithography Program: Section 316.4.5 on Page 24

« Exporting Older Programsinto Version 5.12 or Later: Section 316.4.6 on Page 30

* PeformanceTips: Section 316.4.7 on Page 31

316.4.1 What You Will Need

To perform Lithography on the NanoScope, you must have the following components:

e Microsoft Visual C++ Compiler (provided with your NanoLithography option)

e Internet Explorer ™ browser 4.0 or aboveis necessary to install the Visual C++ compiler.

« NanoScope Software (5.12 or above)

Note: Older versions of the NanoScope software require additional functionsto run

NanoL ithography in the manner detailed in this support note. For exporting ol der
Lithography files for use in the 5.12 NanoScope software, see Exporting Older
Programsinto Version 5.12 or Later: Section 316.4.6 on Page 30.

* NanoLithography Program files (e.g., litho.h, z.lib, gui.h, sysdefs.h and three
sample programs)

In general, NanoL ithography includes the following abbreviated steps:
1. Perform the necessary steps for placing al filesin the SPM directory.
2. Verify, edit or modify the lithography program in the C++ compiler source files.
3. Buildthe DLL filein the C++ compiler.
4. Engage thetip on the surface and obtain an image in the NanoScope.

5. Determine the lithography site on the sample surface.

8 NanoLithography Rev. A

Procedures to Perform NanoLithography
Testing Your System [LithoHelloWorld.dll]

6. Load and run the macro lithography program (DLL).

7. Continue to image the site.

8. Capture the lithographic image.

316.4.2 Testing Your System [LithoHelloWorld.dll]

The NanoL ithography package includes one sample to test the features in using the C++ compiler and
NanoScript interface. This section details the procedures to run the sample program, lithoHelloworld.
This program loads a dialog box that displays the phrase, “Hello World!”.

Note: TheLithoHellowWorld test sample does not require hardware to load and run. Its purpose
isto test the procedures and ability to load aDLL file in the NanoScope. For testing a
simple program that uses the hardware, see Testing Your System [Diamond.dIl]: Section
316.4.3 on Page 15.

Locate the Necessary Lithography Files

When running the macro files, the program looks in specific directories for running the commands.
Complete the following procedures to verify that the files are in the correct directory structure.

1

Verify or place the sample program (e.g., LithoHellowWorld) filein your SPM directory. Thisfolder,
containing the C++ source files, should be located in the same directory as your NanoScope
software executable file (i.e., z.exe).

Locate or place thelitho.h, gui.h, sysdefs.h header filesin your SPM/Include directory.

Note: Thelnclude directory must be at the same level asyour Z.exe SPM executable file.

Verify that the z.lib fileisin the SPM directory. Thisfolder should be located in the same directory
as your Z.exe NanoScope software executable file.

Open aWorkspace in The Microsoft Visual C++

L ocate the sample program folder (e.g., LithoHelloworld) and open the folder to display thelist of
files.

Double-click on the workspace file (i.e., the file with an *.dsw file extension).

Note: Thiswill open the Microsoft Visual C++ compiler and workspace
(See Figure 316.44).

Rev. A

NanoLithography 9

Procedures to Perform NanoLithography
Testing Your System [LithoHelloWorld.dlII]

Figure 316.4a C++ Compiler FileView

(10 [o pose Pumasc Qi Tomn Sl jlig
2 2@ L TE™ 5 im [i e = - S R
[o SN [T Hwe @

. ; - Source Code from the
gt ol o o lithoHelloWorld.cpp File

7215

Workspace and
List of Project Files

Note: If the source code is not open in the client window, expand the Sour cefilesin the
workspace and double-click the *.cpp file to display the source code information.

Note: For specific details of the source codein this sample, see Sample#1: LithoHelloWorld:
Section 316.5.1 on Page 33.
Verify Project Settings

In order for the filesto link and place output files in the correct directories, you must verify the project
settings.

1. IntheVisual C++ menu bar, select Project > Settings to open the Project Settings dialog box.
2. Select the C/C++ tab (See Figure 316.4b).

a. Changethe Category to PREPROCESSOR.

Figure316.4b C/C++ Tab

Batings For [i:3z Dabug =] | Genami | Debug ©fces | Lisk | Fesowess | MO]3]
‘_ IR oo [T |
i Hesder Files
2 Fesource Fies Fraprogaeior dandionk
[Wwitaz_DEBUG, WIHDOWS,_MECE,_LIERDLL LITHOHELLD
Lindefnad symioks ™ Unchefise gl gymbscls
m TREISE
[iechas < SPM/Include
L= Directory
: Path
I Ignome siandsed rchde pahs
Frojact Jedons:
drvoioao T T PR Pl T S0 O 1T nchade® L ﬂ
IR f0_DEBUG® 0 " WINDOWS" (D _WBECS™ /0
*_UEROLL™ jD "UTHOHELL WORLD_EXPORTS" -
[32]
S
[o | caca |

10 NanoLithography Rev. A

Procedures to Perform NanoLithography
Testing Your System [LithoHelloWorld.dll]

b. Inthe Additional Include Directorieswindow, the path displays two dots, a backward slash and
theinclude file name. This allows the program to look one level up from the lithography folders
in the SPM/Include directory.

Note: Remember to verify the correct header files are in the SPM/Include directory (e.g.,
litho.h and gui.h for this example).

3. Sdlect the Link tab and verify that the Category window displays GENERAL

(See Figure 316.4c).

Figure 316.4c Project Properties Dialog Box

|

Sekwga Foi | ZDebag
g

o Fowite Files
' Headir Pl

_J Heararre Filpx

Gevaisl | Debeg | Cf

Cabagory |-..-.m| :I

Okl hin piirs
| d Ehshusinioridl 1

Oliqeot ey mecdubis

||. Ik o Eolsmul] b wed kb pch el ibosheep i 1k

K G issis by g 6w I™ bgrvora Al doleil) Boasda e

' Lk pesem sy ™ G i agriie
= I Qe prodare LB
Prop o Dyl
= paeel 10 Db s X2 Bb a1 kb savepood W comd gL kb ﬂ
Sl I kA3 bb ol IT 0 Chadaelal Bh tad

theld b edbeep bl fkgs el fnosmenksl vei ___]

[o | coms

| Link

Tab

[7212]

a. IntheOutput file name window, verify that the display reads two dots, abackward slash and the
output FI LE NAME (e.g.,.\lithoHelloworld.dll).

Note: This notation placesthefile at onelevel up (or out) from the project folder and allows for
thisDLL fileto be at the Z.exe, or SPM executablefile level.

b. Inthe Output file name window, you may replace the two dots and backward slash with the
exact location of the directory structure (e.g., D:/SPM/LithoHellowWorld.dll).

Note: If thefile name already exists, the new DLL file will overwrite the old file automatically.
If the file name does not exist, thefinal DLL fileis added to the SPM directory.

NanoLithography

11

Procedures to Perform NanoLithography
Testing Your System [LithoHelloWorld.dlII]

4. IntheLink tab, change the Category to Input (See Figure 316.4d).

a. Inthe Object/library moduleswindow, verify that z.lib follows that last item in the
horizontal list of library files and each library module is separated by a space.

b. Verify that the Additional Library Path displays two dots and backward slash (i.e,, ..\) to
direct the path to the z.lib file.

Figure316.4d Link Tab
e _TI

Emfangn For f<uin 17 Nsh o] | Fesew | Debug | £ L | Fassutes | WO o0
-y Braats Fi ':‘W'W‘t(;-r-' j){—B:-: I Input
_p Hamide ks Otk - - Category
i Fmupiare fim i My ol
|l. ke 17 khclamit1? Ehwadbh nehc T i odhrep (: ‘ NanoScope
Vo bhwvess 1™ iganre o deiask iy Library File

Errs romibairerersn o
g ciewaed by i

Propies Qyrissin

Bl : "
£
7214

Building a Dynamic Link Library (DLL) File

In order to run lithography, the programs need to be “built” in the form of DLL files. Veeco
Instruments, Inc. uses an industry standard, C/C++ compiler to build the DLLs. Complete the
following procedures to build your DLL file from the set of project files.

1. Inthe C++ compiler, with the sourcefile open, verify that the source codeis correct (i.e., edit the
settings).

Note: Prior to building you can modify the source code. Once you build the program, the
DLL locks all program settingsin to the DLL file. If changes are made to the source
code, you must rebuild the DLL file.

2. Open the Build menu, select the Build command.

12 NanoLithography Rev. A

Procedures to Perform NanoLithography
Testing Your System [LithoHelloWorld.dll]

Debugging the Program
Verify that the Build window displays file code being compiled into the DLL file.

1. Upon completion of the build, check the number of errors. (See Figure 316.4¢€).

Figure 316.4e Build Window

11 thoMel loworld.dll - 0 erroris). 0 warningis]

—
N
A Lo b tmeio lwig Ty Fired n Flian 3, Fired in Flbar 2 Jl4] | N~

a. For asuccessful build, the error log shows 0.

2. If errorsexist in the source code, scroll up in the Build window, double click to read the error
message and an arrow appears in the source code where the error exists.

a. Make necessary changesin the setting or syntax.

3. Oncetheerrors are fixed, select the Build > Rebuild menu command.

Using the NanoScope Software and Running Your Litho Programs
Once you build and debug a program, the DLL fileisready to load in the NanoScope software to run
lithography. In lithoHelloWorId, hardware is not necessary to test the macro load features.
Open the NanoScope Debug Window

While in the NanoScope software, it is helpful to have the NanoScope Debug window showing.
Complete the following while in the NanoScope software:

1. Click on the Control Monitor and hit Ctrl-Alt-D.
2. Select the Filter menu and check Litho, SayError, and L ogAllChecked.
3. Closethefilter box.

Note: You should then see debug msgsin the black debug window.

Run the Lithography Macro (DLL)
1. Open the Real Time mode operations.

2. Open the DI menu and select the NanoScript command.

Rev. A NanoLithography 13

Procedures to Perform NanoLithography
Testing Your System [LithoHelloWorld.dlII]

3. Inthe NanoScript screen, select Macro > Load to accessthelist of DLL files (See Figure
316.4f).
Figure 316.4f Lithography DLL Files

- Macre Run

| iehonellowarte! dil

ie

dipatmna. df | #| | Cancel
dist_t3a.dil
extrnan. dil
germcppdl ol
geegern.dil
ice di

iggerr il
lehchsloporidl |
Izt dll
Iztnpir dil *

File Type: *.dll

7228

4. Browseto sdlect the DLL filetoload and click OK.

Note: In this sample, adialog box appears on the screen with the phrase, “Hello World!”
for testing the Macro loading procedures.

Figure 316.4g LithoHelloWorld Dialog Box

Hello World|

:

7255

Note: Seealso, Testing Your System [Diamond.dll]: Section 316.4.3 on Page 15 for
details on interfacing with hardware to test your Lithography programs.

14 NanoLithography Rev. A

Procedures to Perform NanoLithography
Testing Your System [Diamond.dll]

316.4.3 Testing Your System [Diamond.dll]

The NanoLithography package includes one sample to test the features in using the C++ compiler
and NanoScript interface. This section details the procedures to run the sample program, Diamond.
This program loads a program that scribes a diamond shape on the sample surface.

Note: Thistest sample requires hardware to load and run. Its purpose isto test the
procedures and ability toload aDLL file in the NanoScope and run the system. For
testing a ssimple program that does not require the hardware, see Testing Your
System [LithoHelloworld.dll]: Section 316.4.2 on Page 9.

Locate the Necessary Lithography Files

When running the macro files, the program looks in specific directories for running the commands.
Complete the following procedures to verify that the files are in the correct directory structure.

1. Verify or place the sample program (e.g., Diamond) file in your SPM directory. Thisfolder,
containing the C++ source files, should be located in the same directory as your Z.exe
NanoScope software executable file.

2. Locate or place the header files (e.g., litho.h, gui.h, sysdefs.h) in your SPM/Include
directory.

Note: The Include directory must be at the same level asyour Z.exe SPM executablefile.

3. Veify that the z.lib fileisin the SPM directory. This folder should be located in the same
directory as your Z.exe NanoScope software executable file.

4. Open aWorkspace in The Microsoft Visual C++

5. Locate the sample program folder (e.g.,Diamond) and open the folder to display thelist of
files.

6. Double-click on the *.dsw workspace file.

Note: Thiswill open the Microsoft Visual C++ compiler and workspace.

Verify Project Settings

In order for the files to link and place output files in the correct directories, you must verify the
project settings.

1. IntheVisua C++ menu bar, select Project > Settings to open the Project Settings dialog
box.

2. Select the C/C++ tab.

a. Change that the Category to PREPROCESSCOR.

Rev. A NanoLithography 15

Procedures to Perform NanoLithography
Testing Your System [Diamond.dll]

b. Inthe Additional Include Directories window, the path displays two dots, a backward slash
and theinclude file name. This allows the program to look one level up from the lithography
foldersin the SPM/Include directory.

Note: Remember to verify the correct header files are in the SPM/Include directory (e.g.,
litho.h and gui.h for this example).

3. Select the Link tab and check that the Category window displays GENERAL.

a. Inthe Output file name window, verify that the display reads two dots, a backward slash and
the output file name (e.g.,.\lithoHelloWworld.dll).

Note: This notation placesthefile at onelevel up (or out) from the project folder and allows
for thisDLL fileto be at the SPM executable (i.e., z.exe) level.

b. Inthe Output file name window, you may replace the two dots and backward slash with he
exact location of the directory structure (e.g., D:/SPM/LithoHelloworld.dll).

Note: In naming the exact directory structure, forward slashes are acceptable to show the the
path.

Note: If the file name already exists, the new DLL file will overwrite the old file
automatically. If the file name does not exist, the final DLL fileis added to the SPM

directory.
4. IntheLink tab, change the Category to Input (See Figure 316.4d).

a. Inthe Object/library moduleswindow, verify that z.lib follows that last item in the
horizontal list of library files (i.e., each library module is separated by a space).

b. Verify that the Additional Library Path displays two dots and backward slash (i.e,, ..\) to
direct the path to the z.lib file.

Building a DLL File

In order to run lithography, the programs need to be “built” in the form of DLL files. Veeco
Instruments, Inc. uses an industry standard C/C++ compiler to build the DLLs. Complete the following
procedures to build your DLL file from the set of project files.

1. Inthe C++ compiler, with the source file open, verify that the source codeis correct or edit the
settings.

Note: Prior to building you can modify the source code. Once you build the program, the
DLL locksal program settingsin to the DLL file. If changes are made to the source
code, you must rebuild the DLL file.

2. Open the Build menu, select the Build command.

16 NanoLithography Rev. A

Procedures to Perform NanoLithography
Testing Your System [Diamond.dll]

Debugging the Program
Check that the Build window displays file code being compiled in to the DLL file.
1. Upon completion of the build, check the number of errors.
a. For asuccessful build, the error log shows 0.

2. If errorsexist in the source code, scroll up in the Build window, double click to read the error
message and an arrow appears in the source code where the error exists.

a Make necessary changesin the setting or syntax.

3. Oncetheerrors are fixed, select the Build > Rebuild menu command.

Using the NanoScope Software and Running Your Litho Programs
Once you build (and debug) a program, the DLL fileisready to load in the NanoScope software to run
lithography.
Open the NanoScope Software Debug Window

While in the NanoScope software, it is helpful to have the NanoScope Debug window showing.
Complete the following while in the NanoScope software:

1. Click anywhere on the Control Monitor.
2. Select Ctrl-Alt-D.
Note: A filter box appears.
3. Sdlect the Filter menu and check Litho, SayError, and L ogAllChecked.
4. Closethefilter box.
Note: You should then see debug msgs in the black debug window.
Preparing the Microscope for a Lithography Program. In addition to the standard setup
reguirementsto run the microscope, it is necessary to verify the following components for desired results:

* Sample—The sample depends on the method of lithography (i.e., scribing, indenting,
mani pulating surface topography or oxidizing using advanced methods of Lithography).

» Tip—Standard (Silicon Nitride) Contact mode tips are recommended on the two sample
templates requiring tip movement. On additional applications, follow the guidelines for your
desired results.

* Real Time Settings—The Real Time control panels should reflect the type of lithography
desired (e.g., for scribing a diamond, you set the microscope profile and settings to Contact
mode operation).

Rev. A NanoLithography 17

Procedures to Perform NanoLithography
Testing Your System [Diamond.dll]

1. Once the hardware and software components are set, open the Real Time mode operations.

Note: For this example, the NanoScript commands are accessed in Real Time or Offline
mode.

2. Verify that the sampleis on the chuck (or stage) and complete the necessary steps to focus
surface and tip.

3. Set your microscope profile to Contact mode (Real time > Microscope > Profile > Contact
Mode).

Note: Set the mode to tapping for specific applications.
4. Engage thetip on the surface and view your imaging mode.

5. Open the DI menu and select the NanoScript command.

Run the Lithography Macro (DLL)
1. Inthe NanoScript screen, select Macro > L oad to accessthelist of DLL files.
2. Browseto select the D AMOND. DLL fileto load and click oK.
Note: The imaging appears to stop while the debug window displays the program

instructions. Once the lithography is complete, a diamond shape isinscribed on the
sample surface (See Figure 316.4h).

Figure 316.4h Diamond Test Program

18 NanoLithography Rev. A

Procedures to Perform NanoLithography
Modifying a Lithography Program

316.4.4 Modifying a Lithography Program

In this example, the Diamond lithography program is modified by changing thetip X andY movement
dimensions from 10pm to 5um.

Locate the Necessary Lithography Files

When running the macro files, the program looks in specific directories for running the commands.
Complete the following procedures to verify that the files are in the correct directory structure.

1. Verify or place the sample program (e.g., LithoHelloWorld) folder in your SPM directory. This
file, containing the C++ source files, must be in afolder, which isin the same directory as your
Z .exe NanoScope software executablefile.

2. Locate or placethelitho.h, gui.h, sysdefs.h header filesin your SPM/Include directory.

Note: The Include directory must be at the same level as your Z.exe SPM executable file.

3. Verify that thez.lib fileisalso in the same directory asyour Z.exe NanoScope software executable
file.

Open a C++ Workspace
1. Locate the sample program folder (e.g. Diamond) and open the folder to display thelist of files.
2. Double-click on the *.dsw workspace file.
Note: The Microsoft Visual C++ compiler and workspace opens (See Figure 316.4i).
3. Verify that the File View tab is selected to view the list of Source files.
Note: If the source code is not open in the client window, expand the Sour cefilesin the
workspace to display Diamond.cpp, double-click the Diamond.cpp file to display the

source code information (See Figure 316.4i).

Note: For details of the source codein this sample, see Sample #2: Diamond: Section 316.5.2.

Modify the Source File

In this example, the source code modification includes changing the tip travel distance from 10um to
S5uminthe X andY direction.

1. Intheline, double size = 10;// 10 um from center of diamond to point, change the 10 to 5 and
update the comment to your new specifications (See Figure 316.4i).

Note: Thischangesthetip travel distanceinthe X andY direction from 10pum to 5um. You may
also change the Scan sizein the Scan Controls panel to suit the new dimensions. In this
example, the dimensions are lowered, so changing the Scan size is not necessary.

Rev. A NanoLithography 19

Procedures to Perform NanoLithography
Modifying a Lithography Program

Figure 316.4i Modified Source Code

7T diamond.cpp
/I Example - Modifying a Lithography Program

#include <litho.h>

extern "C" __declspec(dllexport) int macroMain()
E_ITHO_BEGIN

LithoDisplayStatusBox();// display litho status box

LithoScan(false);// turn off scanning
LithoCenterXY/();// move tip to center of field

(Modification)—’(double size = 5;// moves the tip from center of diamond 5um in X andY.)

double rate = 20;// move the tip In X-Y at 20 um/s

double depth = -0.020;// push the tip in 20 nm to draw lines
double z_rate = 0.040;// move the tip down at 40 nm/s

The modification causes the tip to move to the center and then move outward to the 3-0’ clock position
adistance of 5um (See Figure 316.4j).

Figure 316.4j LithoTranslate Movement
Sum_ 4

Image center

< Start Lithography

Verify Project Settings

In order for thefilesto link and place output files in the correct directories, you must verify the project
settings.

1. Inthe menu bar, select Project > Settings to open the Project Settings dialog box.
2. Select the C/C++ tab.
a. Changethe Category to PREPROCESSOR.
b. Inthe Additional Include Directories window, the path displays two dots, a backward slash

and the include file name. This allows the program to look one level up from the lithography
foldersin the SPM/Include directory.

20 NanoLithography Rev. A

Procedures to Perform NanoLithography
Modifying a Lithography Program

Note: Remember to verify the correct header files are in the SPM/Include directory (e.g.,
litho.h and gui.h for this example).

3. Sdlect the Link tab and verify that the Category window displays GENERAL.

a. IntheOutput file name window, verify that the display reads two dots, abackward slash and the
output file name (e.g.,..\DiamondGui.dll).

Note: This notation placesthefile at onelevel up (or out) from the project folder and allows for
thisDLL file to be at the SPM executable (i.e., z.exe) level.

b. Inthe Output file name window, you may replace the two dots and backward slash with D:/
SPM/DiamondGui.dll.

Note: If thefile name aready exists, the new DLL filewill overwrite the old file automatically.
If the file name does not exist, the final DLL file is added to the SPM directory.

4. IntheLink tab, change the Category to I nput (See Figure 316.4d).

a. Inthe Object/library modules window, verify that z.lib follows that last item in the horizontal
list of library files and each library module is separated by a space.

b. Verify that the Additional Library Path displaystwo dots and backward slash (i.e., ..\) to direct
the path to the z.lib file.
Building a DLL File

In order to run lithography, the programs need to be “built” in the form DLL files. Veeco Instruments, Inc.
uses an industry standard C/C++ compiler to build the DLLs.

Complete the following proceduresto build your DLL file from the set of project files:

1. Inthe C++ compiler, with the source file open, verify that the source code is correct or edit the
settings.

Note: Prior to building you can modify the source code. Once you build the program, the DLL
locks all program settingsinto the DLL file. If changes are made to the source code, you

must rebuild the DLL file.
2. Open the Build menu, select the Build command.

Debugging the Program

During abuild, verify the project settings scroll through the code to build aDLL file. If syntax errors
occur in the program, the build will not be successful.

1. Check the number of errorsin the Build window. (See Figure 316.4¢€).

a. For asuccessful build, the error log shows 0.

2. If errorsexist in the source code, scroll up in the Build window, double click to read the error
message and an arrow appears in the source code where the error exists.

Rev. A NanoLithography 21

Procedures to Perform NanoLithography
Modifying a Lithography Program

a. Make necessary changesin the setting or syntax.

3. Oncetheerrors are fixed, select the Build > Rebuild menu command.

Open the NanoScope Software
Once you build and debug a program, the DLL fileisready to load in the NanoScope software to run a
lithography on the sample surface.

Open the NanoScope Debug Window

While in the NanoScope software, it is helpful to have the NanoScope Debug window showing.
Complete the following while in the NanoScope software:

1. Click on the Control Monitor and hit Ctrl-Alt-D.
2. Select the Filter menu and check Litho, SayError, and L ogAllChecked.
3. Closethefilter box.
Note: You should then see debug msgs in the black debug window.
Prepare the Microscope for a Lithography Program. In addition to the standard setup
requirements to run the microscope, it is necessary to verify the following components for desired

results:

« Sample—The sample depends on the method of lithography (i.e., scribing, indenting,
manipulating surface topography or oxidizing using advanced methods of Lithography).

e Tip—Standard (Silicon Nitride) Contact mode tips are recommended on the two sample
templates requiring tip movement. On additional applications, follow the guidelines for
your desired results.

¢ Real Time Settings—The Real Time control panels should reflect the type of lithography
desired (e.g., for scribing adiamond, you set the microscope profile and settings to Contact
mode operation).

1. Once the hardware and software components are set, open the Real Time mode operations.

2. Open the DI menu and select the NanoScript command.

Run the Lithography Macro DLL
1. Inthe NanoScript screen, select Macro > L oad to accessthelist of DLL files.

2. Browseto select the DLL fileto load and click oK.

22 NanoLithography Rev. A

Procedures to Perform NanoLithography
Modifying a Lithography Program

Note that in the image window, scanning appears to halt. This means that the Lithography program
isloading. If your debug window appears, the program instructions display as the Lithography
program is running. Upon completion, the real time scan continues.

3. View your new diamond shape on the surface (See Figure 316.4Kk).
Note: Figure 316.4k is alithographic image captured using a Closed Loop XY scanner.

For additional information on a Closed Loop XY scanner, contact your Digital
Instruments, Veeco Metrology Group representative.

Figure 316.4k Diamond-shaped Lithography Image

14 pm

Image is Courtesy of Debra Cook,
Application Scientist, Digital Instruments,
\eeco Metrology Group

4. Select Capture> Capture Filenameto name thefile.
5. Select the CAPTURE button or Capture menu > Captur e command.

6. View thisimagein offline mode to modify (e.g., Flatten) or analyze the image.

Rev. A NanoLithography 23

Procedures to Perform NanoLithography
Writing a New Lithography Program

316.4.5 Writing a New Lithography Program

Writing a new lithography program requires using the Microsoft Visual C++ compiler, understanding
the NanoScript macro language and C programming language syntax. For more complex programs,
intermediate to advanced knowledge of C programming is needed. For example, one method to scribe
concentric lithographic shapes requires understanding the concept of For L oopsin C programming.

This sections detail s the procedures to open a new project, connect the source files to the project, set
the project settings and build the project. The sample templates with this option are helpful to write
your programs. For the first program, it is recommended to copy one of the sample programsinto a
blank source code (*.cpp) file then customize it for desired results. This allows for keeping specific
language declarationsin place. In this section, you will open anew project, verify al output file names
and copy/paste the source code from Sample #2: Diamond.

The following sections detail the general procedures to build new lithography programs.

Open a New Project

1. Open the C++ compiler.

2. Select File> New to access the New Project dialog box (See Figure 316.41).

3. Select the Projectstab to designate the type of project, output file name and output location.

Figure 316.41 New Project Dialog Box

My Fuymhy |W'r-m-||h—'."-c-'—1-|

Type of

Project =

G"""')Iq— Final Project
Name

(@ | —— File

7 .
Location

T Copuss mass: =00 CIDECE
T e o
r

I zl

= <1

=i

4. Select the Win32 Dynamic-Link Library to designate the type of project to load.

5. Enter your project folder name (e.g., Diamondpolycarbon) in the Project name window.

6. Inthe L ocation window, enter the Directory location and the FI LENAMVE (e.0.,

D: \ SPM SMDI AVOND).

7. Select the Create a new wor kspace option.

8. Select OK to continue.

24 NanoLithography Rev. A

Procedures to Perform NanoLithography
Writing a New Lithography Program

Note: A new project wizard opens (See Figure 316.4m).

Figure316.4m New DLL Wizard Dialog Box

9. Select An empty DLL project option.
10. Click FINISH.

Note: A warning prompt appearsto display the project information (See Figure 316.4n).

Figure 316.4n New Project Information

11. Select OK.

Rev. A NanoLithography 25

Procedures to Perform NanoLithography
Writing a New Lithography Program

“File

View”
List of
Files

Note: The C++ compiler screens appear with a new workspace (See Figure 316.40).

Figure316.40 New Workspace

e e — -

E|

ﬂwimihr

e PR TR LTSS Tl

Create the Source and Header Files

Thelist of filesin the workspace include Sour ce and Header files. At this point, the files are empty.

Thefiles in the source files include the source code. The header filesinclude *.h files directed in the
source code.

To add sourcefiles, you may choose one of the following methods:

Add New Code

1. Sdect File> New > Filestab. Select the C++ Sour ce files and name the new source file.
2. Click Ok and ablank notepad appears in the client window.

3. Typein new code.

26

NanoLithography Rev. A

Procedures to Perform NanoLithography
Writing a New Lithography Program

Copy Source Code from Samples or Older Programs
1. Browseto locate a sample *.cpp file (e.g., Sample #2: Diamond in your SPM directory).

2. Open the*.cpp file, copy and paste the code in to the blank sourcefile.

Figure316.4p New Source Files

[[e e B Dl Traie fijmns ew
S #00 1h8 D TEEWN F) e Els- Bl
I 2 j i s jl!ll.'l\.ﬂll! ja'l' e i il TR

Fr
]

P —
ﬂ!llrﬂﬂ'rrﬂh'r.‘lll

SCTETE : _ARTIEDEC 2. I emTTt BT mecroaaie| |

. {{ This section begins the Mew Lithegraphy Program Code.

New Code
Modificatio

1l |]

"':I:-'-'nl HFh'q'—l T8

IhlL
7224

Delete, Edit or Modify the Copied Source Code
You are now ready to create your source code. Refer to your knowledge of modern C/C++ programming
or the sample templates and create the settings related to your desired results.
Modifying Older Programs
To modify pre-5.12 NanoScope software Lithography programs, change the following:
1. Replace the main syntax with the following:
extern " C" _ declspec(dllexport) int macroMain()

2. If thefile sysdef.h isin your Include directory, the function LithoScan (FAL SE) works properly.

Rev. A NanoLithography 27

Procedures to Perform NanoLithography
Writing a New Lithography Program

Note: "FALSE" and "TRUE" as upper case words, were defined in NanoScript’s sysdefs.h
header file.

a. If youdo NOT have the sysdef.h in your include directory, replace LithoScan (FAL SE) with
the following:

LithoScan (false)

3. Add thefollowing line to the end of the main section at the bottom of the code below
“LithoEnd” and above the last bracket “}”:

return O; // 0 makes macro unload

Note: Seealso, Exporting Older ProgramsintoVersion 5.12 or Later: Section 316.4.6 on
Page 30.

Verify Project Files and Settings

It isimportant to know the location of your SPM files and the Z.exefile that runsyour hardware. Verify
the location of the following lithography files:

1. Verify thezlib filein the SPM directory.

2. Verify the header files (.h) in the source code. In this sample, the header filesincludelitho.h and
gui.h. Verify that both files are in the SPM/I nclude directory.

Verify Project Settings

In order for thefilesto link and to output filesin the correct directories, you must verify the project
settings.

1. IntheVisua C++ menu bar, select Project > Settings to open the Project Settings dialog box.
2. Select the C/C++ tab.
a. Changethe Category to PREPROCESSOR.

b. Inthe Additional Include Directories window, the path displays two dots, a backward slash
and theinclude file name. This allows the program to look one level up from the lithography
foldersin the SPM/Include directory.

Note: Remember to verify the correct header files are in the SPM/Include directory (e.g.,
litho.h and gui.h for this example).

3. Select the Link tab and verify that the Category window displays GENERAL
(See Figure 316.a).

a. Inthe Output file name window, verify that the display reads two dots and a backward slash.
The two dots and a slash mean to place the file at one level up (or out) from the source folder
alowing for thisDLL fileto be at the SPM executable level.

28 NanoLithography Rev. A

Procedures to Perform NanoLithography
Writing a New Lithography Program

b. Theexact location of the directory structure may also be named for thiswindow (e.g., D:/SPM/
YOUR FI LENAME.II) in the place of the two dots and a backward dlash.

Note: In naming the exact directory structure, forward slashes are acceptable to show the the
path.

c. Verify that the output file nameis correct with the DLL extension. If the file name exists, the new
DLL filewill overwrite the old file automatically. If the file name does not exist, the final DLL
fileis added to the SPM directory.

4. IntheLink tab, changethe Category to Input.

a. Inthe Object/library modules window, verify that z.lib follows a space and isthe last item in
the horizontal list of library files and each library module is separated by a space.

b. Verify that the Additional Library Path displays two dots and backward slash to direct the path
up one level to the z.lib file.

5. Select OK.

Build the DLL File

In order to run lithography, the programs need to be “built” in the form of DLL files. Veeco Instruments,
Inc. uses an industry standard, C/C++ compiler to build the DLLs.

Complete the following proceduresto build your DLL file from the set of project files:

1. Inthe C++ compiler, with the source file open, verify that the source code is correct or edit the
settings.

Note: Prior to building you can modify the source code. Once you build the program, the DLL
locks all program settings in to the loadable DLL file.

2. Open the Build menu, select the Build command.

Note: Inthelower window, you will see the project scroll through the codeto build aDLL file.
If syntax errors occur in the program, the build will not be successful.

3. Check the number of errorsin the Build window. (See Figure 316.4q).
a. For asuccessful build, the error log shows 0.
b. To check errors, double-click on the error message in the Build window.
Note: An arrow appearsin the Source code where the error exists.
c. Make the necessary changesin the settings or syntax.

4. Oncetheerrorsare verified and fixed, select the Build > Rebuild menu command.

Rev. A NanoLithography 29

Procedures to Perform NanoLithography
Exporting Older Programs into Version 5.12 or Later

Figure 316.4q Build Window

ﬂ -------------------- Configuration: lithoHelloWorld - Win3Z Debug---
I n file.d1l - D error(s). 0 warning (s]
—
™
'I*'"- =T -\.'_.{tllbl.l-l:hFlﬂlthll-lll }‘_Fﬂﬂlﬂ Flll:i_ll|I |'I| I c,ll

Run the NanoScope and Load the New DLL
1. After creating anew DLL file, open the NanoScope software.
2. Open the Real Time mode, engage the surface and obtain an image.

Note: It may be necessary to adjust the sample, using Stage commands if available, and/or
use X and Y offsetsto position the lithography site at the center of the screen.

3. Sdlect the DI > NanoScript command.
4. Inthe NanoScript screen, select Macro > L oad and browse to locate the new project.dll file.
5. Browseinthe Macro Run diaog box to select the desired DLL file.
6. Click OK to begin the NanoLithography program.
Note: When the program is complete, the system returns to Real Time engage mode.
7. Continue to image until the Lithographic feature is seen in the image window.

8. Sdlect the Capture command to save the image in the Captur e directory.

316.4.6 Exporting Older Programs into Version 5.12 or Later

For users with pre-5.12 programs, slight modifications allow for using these programs to perform
NanoLithography in Version 5.12 or later NanoScope software.

Note: If you are copying code from an older version of software, you must also make these
changes.

To modify older programs, change the following;:
1. Replace the main syntax with the following:
extern " C" _ declspec(dllexport) int macroMain()

2. If thefile sysdef.h isin your Include directory, the function LithoScan (FAL SE) works
properly.

30 NanoLithography Rev. A

Procedures to Perform NanoLithography
Performance Tips

Note: "FALSE" and "TRUE" as upper case words, were defined in NanoScript's sysdefs.h
header file.

a. If youdo NOT havethe sysdef.h in your include directory, replace LithoScan (FAL SE) with the
following:

LithoScan (false)

3. Addthefollowing line to the end of the main section at the bottom of the code below “LithoEnd”
and above the last bracket “}":

return O; // 0 makes macro unload

Figure 316.4r Sample of Changesto Older Lithography Programs
/I TithoHelloWorld demo macro

#include <litho.h> | Files in your SPM/Include directory

<
€

#include <gui.h>

extern "C" __declspec(dllexport) int macroMai n())
{

Il Send debug statement to debug window
Debug("lithoHelloworld called\n™);

// Put up aGUI dialog

Changes
In the Code AskOK("Lithg", "Hello World!")) __ Dialog box will display
L - these words.
/I Main lithography section
LITHO _BEGIN

Macro functions display
between LITHO_BEGIN
and LITHO_END.

// Put your litho functions here
LITHO_END
Debug("lithoHelloworld exit\n");

(return O; // 0 makes macro unloa(D <+— End of Main section to unload
; the Macro.

316.4.7 PerformanceTips

Experimenting with the sample templates will help you to optimize your Lithography results. This
section details additional known performance tips for optimization.
Open the NanoScope Debug Window

While in the NanoScope software, it is helpful to have the NanoScope Debug window showing.
Complete the following while in the NanoScope software:

Rev. A NanoLithography 31

Procedures to Perform NanoLithography

Performance Tips

1. Click on the Control Monitor and hit Ctrl-Alt-D.

2. Select the Filter menu and check Litho, SayError, and L ogAllChecked.

3. Closethefilter box.

Note: You should then see debug msgs in the black debug window.

General Performance Tips

The following list are general hints to optimize your lithography programming:

L]

Set the Scan size to encompass the entire sample area which you intend the lithography
program to affect.

If you use aLithoTranslate command while feedback is set to off in the L ithoFeedback
command, perform a Capture Plane (Real time > Capture menu) before running the
program so that the tip-to-sampl e distance can be accurately maintained during translation,
or tip movement. Tranglations completed while feedback is turned On do not require this

step.

Trandate, or maneuver the tip with feedback set to on or off, regardless of operating mode.
If feedback is turned off, the tip travels at a constant height relative to the last plane
captured with the Capture Plane command. If feedback is on and gains are properly set,
the tip moves with constant contact force (contact AFM), or with constant tunneling current
(STM).

Scribing can be done with an STM microscope by using the LithoM oveZ command to
partially bury the tip in the sample, then trandating, or moving, the tip. For hard samples,
tungsten tips may be required.

Scribing with an AFM (e.g., MultiMode) microscope can be completed by using the
LithoMoveZ (See Section 316.) command to plunge the tip into the sample (as with the
STM), or by increasing the Setpoint so that the tip is pressed into the surface with a
constant force.

Note: The latter of these methods tends to be superior because the surface is tracked by

feedback during translations instead of relying on Capture Plane to maintain a
constant tip-to-sample distance.

The potential for the tip to scribe a surface depends upon the softness of the material.You
may experiment with the Real time > View > Force M ode > Step command to observe the
tip to surface impact with varying Setpoint values.

32

NanoLithography Rev. A

Sample Programs Overview
Sample #1: LithoHellowWorld

316.5 Sample Programs Overview

The NanoL ithography package includes three sample programs to begin processing lithography macros.
Use the following sample programs as a templ ate to test and write Lithography programs.

& CAUTION: Prior to writing new lithography programs, run the sample programs to avoid damaging
your hardware.
Refer to the following sections to experiment with the sample programs:
e Sample#l: LithoHellowWorld: Section 316.5.1 on Page 33
e Sample#2: Diamond: Section 316.5.2 on Page 34

e Sample#3: DiamondGUI: Section 316.5.3 on Page 36

316.5.1 Sample #1: LithoHelloWorld

The following sample is in the sample programs on your Lithography package disk. Verify the folder,
LithoHelloworld, isin the SPM directory. Figure 316.5a shows the code found in the
LithoHelloworld.cpp file.

Figure316.5a LithoHelloworld Code
/T ithoHelloWorld demo macro

#include <litho.n> | > Gles in your SPM/Include directorD
#include <gui.h> ‘

extern "C" __declspec(dllexport) int macroMain()
{

I/ Send debug statement to debug window
Debug("lithoHelloWorld called\n™);

// Put up aGUI dialog

AskOk("Litho"("Hello World!"); »/ Dialog box will displa
. - these words.
/I Main lithography section

LITHO_BEGIN

Macro functions display
between LITHO_BEGIN

// Put your litho functions here
LITHO_END

Debug("lithoHelloWorld exit\n");

return O; // 0 makes macro unload ——(End of Main section to unIo@

and LITHO_END.

the Macro.

Rev. A NanoLithography 33

Sample Programs Overview
Sample #2: Diamond

316.5.2 Sample #2: Diamond

Figure 316.5b shows the lithography program code that instructs the NanoScope to scribe a diamond
shape. The analysis follows the ling(s) of code for understanding the instructions.

Figure 316.5b Diamond Lithography Code
Analysis of Code:

All comments begin with two forward

/I diamond.cpp slashes.

/I Example #1 - Writing a Lithography Program
xamp ing a tiograpty Frog Directive to include the header (*.h) files.

#include <litho.h>

The macro begins with this

UL

extern "C" __declspec(dllexport) int macroMain() declaration.
{

Initiates lithography mode.
LITHO_BEGIN

LithoDisplayStatusBox();// display litho status box

Scanning is turned off and

. . the tip moves to the center
LithoScan(false);// turn off scanning ————— fthe field

LithoCenterXY();// move tip to center of field

|

Variables are declared to be used
for the X-Y translation distances

double size = 10;// 10 um from center of diamond to point
and rates.

double rate = 20;// move the tip in X-Y at 20 um/s

double depth = -0.020;// push the tip in 20 nm to draw mes | Variables are declared to be used for the
double z_rate = 0.040;// move the tip down at40amis | Z movement distance and rate.

The LithoTranslate command

/I move to first corner of diamond moves the tip to the first corner.

LithoTranslate(size, 0, rate);
The tip hovers above the surface

/I push tip into surface with the feedback on.This command

LithoMoveZ(depth, z_rate);// moving in Z turns offfeeebaek— turns off feedback and plunges the tip
20 nm in to the surface at a rate of

40 nm/s.
/I scribe four sides of the diamond
LithoTranslate(-size, size, rate); The four sides are scribed with the
LithoTranslate(-size, -size, rate); commands “size” and “rate” in the

LithoTranslate(size, -size, rate): positive and negative X and Y directions.

LithoTranslate(size, size, rate);
Ends the lithography program with

LITHO_END LITHO_END. This command
returns the microscope to normal
return 0;// 0 makes the macro unload. scanning and must be included at the
//IReturn 1 to keep the macro loaded. —— 1 end of every program.
}

34 NanoLithography Rev. A

Sample Programs Overview
Sample #2: Diamond

Diamond Lithography Program Results

In the Diamond lithography program sample, the tip plunges 20 nm into the surface after moving 10 um
from the center of the scan field (See Figure 316.5¢).

Figure 316.5¢c LithoTranslate Movement
10pm _ _

Image center

< Start Lithography

The LithoTranslate command moves the tip from the three o’ clock position counterclockwise. The
command line LI THOTRANSLATE(- Sl ZE, SI ZE, RATE) moves the tip to the twelve o’ clock position by
declaring the parameters -size, size or movementsin negative X and positiveY movesand at a set ratein
the DOUBLE RATE = 20 (i.e., 20 um/s). The tip then continues to draw the additional sides of the
diamond shape on the sample surface.

Note: Thetip’s ability to scribe the surface for a given amount of pressure depends upon the
softness of the material.You may experiment with the Real time > View > Force Mode >
Step command to observe the tip impact upon the surface for different Setpoint values.

Rev. A

NanoLithography 35

Sample Programs Overview
Sample #3: DiamondGUI

316.5.3 Sample #3: DiamondGUI

The following sample combines both Sample #1: LithoHelloWorld and Sample #2: Diamond code to
enhance the diamond shape lithography. In this sample, adiaog box adds the capability of modifying

the dimensions of a diamond shape on the sample surface.

Figure 316.5d DiamondGUI Macro Code

/ diamondGUI.cpp
// Example - Writing a Lithography Program with GUI features
// Adds a dialog box to the diamond.cpp example

#include <litho.h>
#include <gui.h>

extern "C" __declspec(dllexport) int macroMain()

{

// Parameters with default values

float size = 10.0f;// 10 um from center of diamond to point
float rate = 20.0f;// move the tip in X-Y at 20 um/s

float depth = -0.020f;// push the tip in 20 nm to draw lines
float z_rate = 0.040f;// move the tip down at 40 nm/s

Make a dialog box to prompt user for parameter values %ﬁ %;dsigl‘gé Céroexa:gs

DialogBox dlg = ModalDialog("Diamond Parameters"); Enter Litho. Settings.

AddFloatControl(dlg, "Size (um)", size, 0.0, 10.0);
AddFloatControl(dlg, "Rate (um/s)", rate, 0.0, 100.0);
AddFloatControl(dlg, "Depth (um)", depth, 0.0, 1.0);
AddFloatControl(dlg, "Z_rate (um/s)", z_rate, 0.0f, 1.011);
AddButton(dlg, "&Do It", noID, NULL, uibClose|uibNone);
//AddButton(dlg, "&Do Litho line", noID, DoLithoLine, uibNone)
AddButton(dlg, "&Cancel", 0, NULL, uibClose|uibNone); /
int res = RunDialog(dlg);

Debug("res: %d\n", res);

if (res == 0)

return 0; // 0 makes macro unload

LITHO_BEGIN

LithoDisplayStatusBox();// display litho status box
LithoScan(false);// turn off scanning

LithoCenterXY();// move tip to center of field

LithoTranslate(size, 0, rate);// move to first corner of diamond
LithoMoveZ(depth, z_rate);// moving in Z turns off feedback // push tip into surface

// scribe four sides of the diamond
LithoTranslate(-size, size, rate);
LithoTranslate(-size, -size, rate);
LithoTranslate(size, -size, rate);
LithoTranslate(size, size, rate);

LITHO_END

return 0;// 0 makes the macro unload. Return 1 to keep the macro loaded.

}

36

NanoLithography

Rev. A

NanoScript Macros
Background

316.6 NanoScript Macros

For modifying or writing new programs, it isimportant to understand the NanoScript macros, or specific
language commands for performing NanoL ithography. The NanoScript macro language includes
commands to translate (move) the tip and to plunge the tip in to sample material while controlling
microscope parameters (e.g., Bias and Setpoint). Section 316.7 and Section 316.8 detail the NanoScript
Lithography Commands and the new GUI commands available with this option.

Note: All functions that include the word (false) will only work properly if the header file,
sysdef.h isin your Include directory. Otherwise, for all statements where (FALSE) is
part of the syntax, change the term to (false), which works properly regardless of the
sysdef.hfile.

316.6.1 Background

The NanoScript macro language was developed by Digital Instruments, Veeco Metrology Group for
automatic control of SPM functions.

Note: For information about adding full NanoScript capability to your microscope, contact
Digital Instruments, Veeco Metrology Group.

NanoScript macro commands add NanoScope functionality to source code written in C language formats
(e.g., C++). The source code exists in the same directory as the NanoScope SPM executable file. This
section details the NanoScript macros associated with programming to perform NanoL ithography.
Refer to the following function commands:

e Litho.h Functions: Section 316.7 on Page 38

e Gui.h Functions: Section 316.8 on Page 46

Rev. A

NanoLithography 37

Litho.h Functions

Background

316.7 Litho.h Functions

For details on these commands, refer to the following sections:

LithoAbort: Section 316.7.1 on Page 39
LITHO_BEGIN: Section 316.7.2 on Page 39
LITHO_END: Section 316.7.3 on Page 39
LithoDisplayStatusBox: Section 316.7.4 on Page 39
LithoRemoveStatusBox: Section 316.7.5 on Page 39
LithoFeedback: Section 316.7.6 on Page 40
LithoSignal: Section 316.7.7 on Page 40

LithoGet: Section 316.7.8 on Page 41
LithoGetSoft: Section 316.7.9 on Page 41
LithoMoveZ: Section 316.7.10 on Page 41
LithoPause: Section 316.7.11 on Page 42
LithoPulse: Section 316.7.12 on Page 42
LithoRamp: Section 316.7.13 on Page 43
LithoRelease: Section 316.7.14 on Page 43
LithoSet: Section 316.7.15 on Page 43
LithoSetSoft: Section 316.7.16 on Page 44
LithoTrandate: Section 316.7.17 on Page 44
LithoTrigger: Section 316.7.18 on Page 44
LithoWaitFor: Section 316.7.19 on Page 45

Gui.h Functions: Section 316.8 on Page 46

38

NanoLithography

Rev. A

Litho.h Functions
LithoAbort

316.7.1 LithoAbort

PROTOTY PE: void LithoAbort();
DESCRIPTION: LithoAbort isused inside alithography block to jump tothe LITHO_END command.

RETURN VALUE: None

316.7.2 LITHO_BEGIN

PROTOTYPE: LITHO_BEGIN
DESCRIPTION: LITHO_BEGIN prepares the SPM for lithography

Note: To stop the scanning, use LithoScan(false). To move the tip to the center of the scan
area, use LithoCenter XY ().

316.7.3 LITHO_END

PROTOTYPE: LITHO_END

DESCRIPTION: Thismacro is placed at the end of a set of lithography commands. Execution of this
command causes the SPM to resume normal scanning.

316.7.4 LithoDisplayStatusBox

PROTOTYPES: void LithoDisplayStatusBox();

DESCRIPTION: Displays the lithography status box.

316.7.5 LithoRemoveStatusBox

PROTOTYPES: void LithoRemoveStatusBox();

DESCRIPTION: Removes the lithography status box.

Rev. A NanoLithography 39

Litho.h Functions
LithoFeedback

316.7.6 LithoFeedback

PROTOTY PES: bool LithoFeedback(bool on);

DESCRIPTION: LithoFeedback turns Z feedback on or off.

RETURN VALUE: FALSE if the command fails.

EXAMPLE:

LithoFeedback (false);//turn off feedback

316.7.7 LithoSignal

The LithoSignal typeis an argument, or boolean command, for several lithography commands:

LithoSet, LithoSetSoft, LithoGet, LithoGetSoft, LithoRamp and L ithoPulse (see descriptions
below). LithoSignal values may be set to any of the following analog lines:

Table 316.7a LithoSignal Analog Lines

Channel

Hard Units

Soft Units

nm

nm

IsZlimit

<|I<|1<|I<

nm

IsBias

mvV

IsSetpoint

V (AFM), nA (STM)

IsAnal

\Y,

Output channels

IsAna2

IsSAna2HV

IsAna3

IsAna4

I1sIn0

ISAUxA

IsAuxB

IsAuxC

ISAuxD

Isinl

Input channels

IsIn2

IsIn3

Isin4

< <I<I<I<I<I<|I<L<I<]|I<I<|I<]|I<

40

NanoLithography

Rev. A

Litho.h Functions
LithoGet

Applications on Specific Analog Lines
Specific applications or microscope modes may only be used with the following analog lines:
* IsBiasisavailable on STM microscopes only.
* IsAnal isavailable on non-EC microscopesin STM, and contact AFM microscopes only.

e |sAna2 and IsAna2HV are available on AFM microscopes where input attentuation is
disabled and on al STM microscopes.

* |sAna3 and IsAna4 are available only NanoScope |l1a controllers which have been upgraded
with additional D/A converters.

316.7.8 LithoGet

PROTOTYPES: double LithoGet (LithoSignal i);

DESCRIPTION: Returns the current value of the specified channel in its hard units, (typically the
signal’s hardware representation). such as volts.

316.7.9 LithoGetSoft
PROTOTYPES: double LithoGet (LithoSignal i);

DESCRIPTION: Returns the current value of the specified channel in its soft units, (typically thesignal’s
software representation), such as nanometers.

316.7.10 LithoMoveZ

PROTOTYPES: bool LithoM oveZ(double dz, doublerate);

DESCRIPTION: LithoM oveZ moves the tip along the Z-axis (dz) at a specified rate. Unitsfor dz are
micrometers; units for rate are in micrometers per second (pum/sec). Positive values for dz moves thetip
away from the sample. This command turns off feedback.

RETURN VALUE: FALSE if the command fails.

EXAMPLE:

LithoMoveZ(-0.020, 0.040);//move the tip 20 nm toward the sample at 40 nm/s.

See also, Optimizing the LithoMoveZ Command bel ow.

Rev. A NanoLithography 41

Litho.h Functions

LithoPause

Optimizing the LithoMoveZ Command

To use LithoMoveZ and trand ation for doing lithography, compl ete the following:
1. Disablethe Slow scan axis, then select Scope mode to examine the surface slope.
Note: Thisrevea the sample tilt along the X-axis.

2. Adjust the sample until thisaxisislevel. (Severa withdrawals and engages may be required to
get the adjustmentsright.).

3. Set the Scan angle to 90° so that the Scope mode trace reveals the sample along its Y -axis;
adjust the sample again until level. Return the Scan angle setting to 0° to verify the sampleis
dill level inits X-axis. You are now ready to do your lithography.

4. Verify that the sampleislevel in both axes.

5. Capture the plane of the image using the Capture Plane command.
If the depth of your etched lines tend to slope from one end of the line to the other, this may indicate
that the sample is not sufficiently level, or that you need to obtain an improved Capture Plane.

Accurate planefit captures require good scans and flat samples. Try to use a smooth area of the sample
for planefits and lithography.

316.7.11 LithoPause

PROTOTY PES: boal LithoPause(double secs);
DESCRIPTION: LithoPause halts lithography for the specified number of seconds (secs).
RETURN VALUE: FALSE if the command fails.

EXAMPLE: LithoPause(0.5);//pause for 0.5 seconds.

316.7.12 LithoPulse

PROTOTYPES: bool LithoPulse(LithoSignal o, double v, double secs);

DESCRIPTION: LithoPulse pulses the output to v (volts) for secs (seconds). The output then returns
to its setting before pulsing.

RETURN VALUE: FALSE if the command fails.
EXAMPLE:

/Ipulse the Bias voltage to 2 volts for a period of 0.1 seconds.
LithoPulse(IsBias, 2, 0.1);

42

NanoLithography Rev. A

Litho.h Functions
LithoRamp

316.7.13 LithoRamp

PROTOTYPES: bool LithoRamp(LithoSignal o, double start, double end, double secs);
DESCRIPTION: Ramps the output specified in o from the voltage specified in start to the voltage
specified in end over the specified time defined in secs. The output then returnsto its previous voltage
and output settings.

RETURN VALUE: FALSE if the command fails.

EXAMPLE:

/lramp the Bias voltage from -2 to 2 volts over a period of 5 seconds.
LithoRamp(IsBias, -2, 2, 5);

316.7.14 LithoRelease

PROTOTYPES: bool LithoRelease(booal allow);

DESCRIPTION: Allowsthe user turn on and off user interface processing during lithography commands.
This makes lithography run faster for critical timing applications but locks out all user access.

RETURN VALUE: FALSE if the command fails.
EXAMPLE:

//Produce a 50 ms pulse on A1. Without the LithoRelease command,
/lthe pulse may be significantly longer than 50 ms.

LithoRelease (false);//turn off user interface processing
LithSet(IsAnal, 10);

LithoPause(0.050);

LithoSet(IsAnal, 0);

LithoRelease (true);//turn on user interface processing

316.7.15 LithoSet

PROTOTYPES: bool LithoSet(LithoSignal o, double v);

DESCRIPTION: LithoSet sets the specified signal o to v in hard units, (typically the signal’s hardware
representation) such as volts.

RETURN VALUE: FALSE if the command fails.
EXAMPLE:

LithoSet (ISAna2, -5)//sets analog line #2 to -5 volts.

Rev. A

NanoLithography 43

Litho.h Functions

LithoSetSoft

316.7.16 LithoSetSoft

PROTOTYPES: bool LithoSetSoft(LithoSignal o, double v);

DESCRIPTION: LithoSetSoft sets the specified signal o to v in soft units, (typically thesigna’s
software representation) such as hanometers.

RETURN VALUE: FALSE if the command fails.

316.7.17 LithoTranslate

PROTOTYPES: bool LithoTranslate(double dx, double dy, doublerate);

DESCRIPTION: LithoTrandate moves the tip along the X-axis (dx) and Y-axis (dy) at a specified
rate. Unitsfor dx and dy are microns; unitsfor rate arein microns per second (um/sec). If feedback is
off, the tip will also be moved in Z according to the captured planefit in an attempt to keep the sample-
to-tip distance constant.

RETURN VALUE: FALSE if the command fails.

EXAMPLE: LithoTrandate (5,0,2);//Trandate the tip 5 um along the X-axis at 2 pm/s.

316.7.18 LithoTrigger

PROTOTY PE: bool LithoTrigger (TriggerLineline);

DESCRIPTION: LithoTrigger sends out approximately 200 ns pulse (hi/lo/hi) on the specified digital
line.

RETURN VALUE: FALSE if the command fails.
EXAMPLE: LithoTrigger (tIDO0);//send pulse out digital line DO:
TRIGGERLINE VALUES: The Trigger Linetypeis used as an argument for the LithoTrigger

command (see description below). Trigger L ine values may be assigned to any of the following analog
lines.

Table 316.7a TriggerLine Analog Lines

Line Value
tIDO -1

tiD1 -2
tIDRO 0x0001
tIDR1 0x0002
tIDR2 0x0004
tIDR3 0x0008

44

NanoLithography Rev. A

Litho.h Functions
LithoWaitFor

Line Value

tIDR4 0x0010
tIDR5 0x0020
tIDR6 0x0040
tIDR7 0x0080
tIDR8 0x0100
tIDR9 0x0200
tIDR10 0x0400
tIDR11 0x0800
tiLine 0x4000
tIFrame 0x8000

Applications on Specific Analog Lines

Specific applications or microscope modes may only be used with the following analog lines:

e tIDOandtID1 lines are only available on non-EC, Small Sample AFM and STM microscopes.

e tIDRO—tIDR11, tILine and tIFrame are only available on SPMswith NanoScope Il1a

controllers.

316.7.19 LithoWaitFor

PROTOTY PE: bool LithoWaitFor (LithoSignal i, doublev);

DESCRIPTION: LithoWaitFor causes the lithography program to pause until the specified input drops

below 'v'.

RETURN VALUE: FALSE if the command fails.

EXAMPLE: LithoWaitFor (Isin1B, 0);//wait for input 1B to drop below 0 volts.

Rev. A

NanoLithography

45

Gui.h Functions

LithoWaitFor

316.8 Gui.h Functions

The functionsin the gui.h file header allow the user to create and manage the display of standard and
custom menus and dialog boxes.

Refer to the following sample list of gui.h function prototyes:

AddButton: Section 316.8.1 on Page 47
AddCheckBox: Section 316.8.2 on Page 47
AddFloatControl: Section 316.8.3 on Page 48
AddIntControl: Section 316.8.4 on Page 48
AddM enultem: Section 316.8.5 on Page 48
AddRadioButton: Section 316.8.6 on Page 48
AddRadioGroup: Section 316.8.7 on Page 49
AddStringEntry: Section 316.8.8 on Page 49
Askxxxx: TheAsk Group: Section 316.8.9 on Page 49
AtMenuBuild: Section 316.8.10 on Page 50
ClearMenuBar: Section 316.8.11 on Page 50
CustomMenuBar: Section 316.8.12 on Page 50
Debug: Section 316.8.13 on Page 50
DelMenultem: Section 316.8.14 on Page 50
EraseM essage: Section 316.8.15 on Page 51
FindM enultem: Section 316.8.16 on Page 51

I sM essageBoxUp: Section 316.8.17 on Page 51
LockGUI: Section 316.8.18 on Page 51
LockMenu: Section 316.8.19 on Page 51

M odalDialog: Section 316.8.20 on Page 52
NormalMenuBar: Section 316.8.21 on Page 52
Passwor dQuery: Section 316.8.22 on Page 52

RemoveSayBox: Section 316.8.23 on Page 52

46

NanoLithography

Rev. A

Gui.h Functions
AddButton

* RunDialog: Section 316.8.24 on Page 53

e SayError: Section 316.8.25 on Page 53

e SayMessage: Section 316.8.26 on Page 53

e SayWarning: Section 316.8.27 on Page 53

» SelectRadioButton: Section 316.8.28 on Page 53
» ShowMessage: Section 316.8.29 on Page 54

e UnlockGUI: Section 316.8.30 on Page 54

* UnlockMenu: Section 316.8.31 on Page 54

316.8.1 AddButton

PROTOTYPES: void AddButton(DialogBox db, char *text, int id, PFV action,
UIBFlags flags);

DESCRIPTION: Adds a button with the specified text to the dialog box specified by ab.
EXAMPLE:

Ul BFI ags can be any combination of the following values:
enum UIBFlags

{

uibNone= 0,

uibDefault= 0x00000100,

uibClose= 0x00000200

};

316.8.2 AddCheckBox

PROTOTY PE: void AddCheckBox(DialogBox db, char *text,
bool & checked);

DESCRIPTION: AddCheckBox adds a check box with the specified text to the dialog box
specified by db.

Rev. A NanoLithography 47

Gui.h Functions
AddFloatControl

316.8.3 AddFloatControl

PROTOTY PE: void AddFloatControl (DialogBox db, char *label, int & value, int min,
int max);

DESCRIPTION: AddFloatControl adds a control which alows the entry of a floating point number to
the dialog box designated by db. The specified label will be displayed next to the entry field. The
entered value is returned in value. The minimum and maximum values allowed are specified in min
and max, respectively.

316.8.4 AddIntControl

PROTOTY PE: void AddIntControl(DialogBox db, char *label, int & value, int min, int max);

DESCRIPTION: AddintControl adds a control which allows the entry of an integer to the dialog box
designated by db. The specified label will be displayed next to the entry field. The entered valueis
returned in value. The minimum and maximum values alowed are specified in min and max,
respectively.

316.8.5 AddMenultem

PROTOTYPE: Menultem AddMenultem(M enultem parent, char *name, PFV fn);

DESCRIPTION: AddMenultem adds a menu item with the name specified by name to the menu
specified by parent. To add an item to the menu bar, specify menuBar as the parent. The function fnis
called when the item is selected by the user. If fnisNULL, no functionis called.

When an ampersand (&) is placed in the character string, the character immediately following the
ampersand becomes a“ quick-key” for that menu item in the dialog box. (For example, “ M’ isthe
quick-key when &M cr oscope is specified in the text string.)

RETURN VALUE: A handleto the newly created menu item is returned. This handle may be used as
the parent argument in subsequent callsto AddMenu to create submenus. See also, FindM enultem,
DelMenultem.

316.8.6 AddRadioButton

PROTOTY PE: void AddRadioButton(RadioGroup rg, char *label, ResID id);

DESCRIPTION: AddRadi oBut t on adds aradio button to agroup of radio buttons specified by r g.
The new radio button receives the name specified by | abel . See also, AddRadioGroup,
SelectRadioGroup.

48

NanoLithography Rev. A

Gui.h Functions
AddRadioGroup

316.8.7 AddRadioGroup

PROTOTY PE: RadioGroup AddRadioGroup(DialogBox db, char *title, ResID & selected);

DESCRIPTION: AddRadioGroup adds aradio group to dialog box db, to which radio buttons can then be
added. The radio group receives the name specified by title.

RETURN VALUE: A handleto the newly created radio group is returned. This handle may be used asthe
parent argument in subsequent calls to AddRadioButton. See also, AddRadioButton,
SelectRadioGroup.

316.8.8 AddStringEntry

PROTOTY PE: void AddStringEntry(DialogBox db, char *prompt, int width, char *buffer, int
buflen);

DESCRIPTION: AddstringEntry adds a string entry field to the dialog box db. The string specified by
prompt will e displayed adjacent to the entry field. The entered text is stored in buffer.

316.8.9 Askxxxx:The Ask Group

PROTOTY PE:

void AskCancel(char *title, char *fmt, ...);

bool AskCancelOk(char *title, char *fmt, ...);

bool AskNoYes(char *title, char *fmt, ...);

void AskOk(char *title, char *fmt, ...);

bool AskOkCancel(char *title, char *fmt, ...);

void AskQuit(char *title, char *fmt, ...);

bool AskYesNo(char *title, char *fmt, ...);

DESCRIPTION: Each of these functions display amodal dialog box. Thetitle of the dialog box is
specifiedby tit | e. Any messages displayed in the modal dialog box are specified by f nt and
remaining parameters (pr i nt f style). In addition the box will have buttons corresponding to the name

of the function called. For instance Ask YesNo will havea‘yes’ and a‘no’ button. The box is closed
when any button is selected.

RETURN VALUE: TRUE if selecting the OK or YES button; FALSE if box closes by selecting the exit
option (i.e., “X").

Rev. A

NanoLithography 49

Gui.h Functions

AtMenuBuild

316.8.10 AtMenuBuild

PROTOTY PE: void AtMenuBuild(void (*fn)(int));

DESCRIPTION: The AtMenuBuild function registers the function fn such that when amenu bar is
being built, the registered function (fn) is called. This alows adding custom menu items using
NanoScript. See also, AddM enultem, FindM enultem, DelM enultem, Clear M enuBar,
CustomMenuBar.

316.8.11 ClearMenuBar

PROTOTY PE: void Clear MenuBar ();

DESCRIPTION: The ClearMenuBar function clears al items from the current menu bar. See also,
FindM enultem, DelM enultem, AddM enul tem.

316.8.12 CustomMenuBar

PROTOTY PE: void CustomM enuBar ();

DESCRIPTION: The function CustomMenuBar displays auser configured menu bar. This menu bar is
not used by any other portion of the NanoScope system. See also, Nor malM enuBar, AddM enultem,
FindMenultem, DelM enultem, Clear M enuBar.

316.8.13 Debug

PROTOTYPE: int Debug(char *fmt, ...);

DESCRIPTION: The function Debug outputs a string as specified to the system debug box. The
argumentsare pri nt f style. Thisbox can also display by selectingCt r | - Al t - D.

RETURN VALUE: Returns the number of characters output to the debug box.

316.8.14 DelMenultem

PROTOTY PE: void DelM enultem(M enultem item);

DESCRIPTION: The function Del Menul t emremoves the specified menu item.

50

NanoLithography Rev. A

Gui.h Functions
EraseMessage

316.8.15 EraseMessage

PROTOTY PE: void EraseM essage();

DESCRIPTION: The Er aseMessage function erases the message box that has been displayed by the
Showivessage function. See also, ShowM essage, SayError, SayWarning, SayM essage,
RemoveSayBox.

316.8.16 FindMenultem

PROTOTY PE:Menultem FindM enultem(Menultem parent, char *name);

DESCRIPTION: The Fi ndMenul t emfunction locates a menu item with the string specified by name
in the menu referred to by par ent . To find an item in the main menu bar, specify menuBar asthe
parent.

RETURN VALUE: Returns the handle to the found menu item. If no matching item isfound, NULL is
returned. See also, AddMenultem, DelMenultem.

316.8.17 IsMessageBoxUp

PROTOTY PE:bool 1sM essageBoxUp();

DESCRIPTION: The function IsMessageBoxUp queries for the presence of the user interface message
box.

RETURN VALUE: TRUE if yes, otherwise FALSE.

316.8.18 LockGUI

PROTOTY PE: void L ockGUI ();

DESCRIPTION: Thefunction LockGUl locksthe user interface preventing all user interaction with the
system until the UnlockGUI function is called. See also, UnlockGUI .

316.8.19 LockMenu

PROTOTY PE: void L ockM enu();

DESCRIPTION: Thefunction Lock Menu locks the current menu bar in place preventing it from being
replaced with another menu bar when the software changes modes. Thisis useful when the macro has put
up a custom menu bar. See also, UnlockM enu, CustomM enuBar.

Rev. A

NanoLithography 51

Gui.h Functions

ModalDialog

316.8.20 ModalDialog

PROTOTY PE:DialogBox M odalDialog(char *title);
DESCRIPTION: The function ModalDialog creates a dialog box with name as specified in title.
EXAMPLE:

The example program below creates a dialog box with atitle of “Title Sring.” The box has one entry
field labelled “Si ze,” which alows float entries from zero to 200. The value entered by the user is
stored in si ze. Additionally, there are two buttons in the dialog box; oneislabelled “Ok” and the
other “Cancel .”

{

float size = 30;

DialogBox dig = ModalDialog (“Title String”);
AddFloatControl (dlg, “Size", size, 0, 200);
AddButton (dig, “&Ok”, 1 NULL,
uibClose|uibDefault);

AddButton (dig, “&Cancel”, 0, NULL, uibClose);
if (RunDialog(dlg) == 0)

return;

}

RETURN VALUE: Returnsthe handle of the newly created dialog box.

316.8.21 NormalMenuBar

PROTOTY PE: void NormalM enuBar ();

DESCRIPTION: The function Nor mal MenuBar displays the default NanoScope menu bar.
See also, CustomM enuBar.

316.8.22 PasswordQuery

PROTOTY PE: bool PasswordQuery();
DESCRIPTION: The function Passwor dQuery prompts the user to enter a password.

RETURN VALUE: TRUE if avalid password is entered; otherwise FALSE

316.8.23 RemoveSayBox

PROTOTY PE: void RemoveSayBox();

DESCRIPTION: The function RenbveSayBox removes any message box from the screen that was
invoked by a Sayxxxx function. See also, SayError, SayWarning, SayM essage.

52

NanoLithography Rev. A

Gui.h Functions
RunDialog

316.8.24 RunDialog

PROTOTY PE: int RunDialog(DialogBox db);

DESCRIPTION: The function RunDi al og displays the dialog box specified by
parameter db. The function returns when the box is closed by the user.

RETURN VALUE: Returnstheid of the button used to close the box. See also, M odalDialog.

316.8.25 SayError

PROTOTY PE: void SayError(char *fmt, ...);

DESCRIPTION: The function SayEr r or displays a message box with thetitleof “Error”.The
parameters specify the message to be displayed and areinpri nt f style. See also, RemoveSayBox.

316.8.26 SayMessage

PROTOTYPE: void SayM essage(char *title, char *fmt, ...);

DESCRIPTION: The function Say Message displays a message box with the specifiedti t| e value.
The remaining parameters specify the message to be displayed and arein pri nt f style. See also,
RemoveSayBox.

316.8.27 SayWarning

PROTOTY PE: void SayWarning(char *fmt, ...);

DESCRIPTION: The function SayWar ni ng displays a message box with thetitle of “ War ni ng” .
The parameters specify the message to be displayed and areinpri nt f style.
See also, RemoveSayBox.

316.8.28 SelectRadioButton

PROTOTY PE: void SelectRadioButton(RadioGroup rg, ResID id);

DESCRIPTION: The function Sel ect Radi oBut t on selects the radio button specified by thei d in
the radio group r g. See also, RunDialog.

Rev. A NanoLithography 53

Gui.h Functions
ShowMessage

316.8.29 ShowMessage

PROTOTY PE: void ShowM essage(char *title, char *fmt, ...);
DESCRIPTION: The function Showivessage invokes a message box with the title as specified by
title. Theremaining parameters specify the messageto be displayedinpri nt f style. While this

box is up the user is prevented from interacting with the system. It must be removed using acall to
Er aseMessage. See also, EraseM essage.

316.8.30 UnlockGUI

PROTOTY PE: void UnlockGUI ();

DESCRIPTION: The function UnlockGUI removes the lock placed by the LockGUI function
preventing all user interaction with the system. See also, L ockGUI.

316.8.31 UnlockMenu

PROTOTY PE: void UnlockM enu();

DESCRIPTION: The function UnlockMenu removes the lock placed by the LockMenu function
preventing the menu bar from changing. See also, L ockM enu.

54 NanoLithography Rev. A

	Title Page
	316.1 Overview
	316.2 New NanoLithography Package
	316.2.1 Package Contents
	316.2.2 Terms and Definitions
	Table 316.2a NanoLithography Terms and Definitions
	Figure 316.2a Workspace and Project Files

	316.3 NanoLithography Theory
	Figure 316.3a Lithography Image
	316.3.1 Mechanical Properties
	Figure 316.3b LithoTranslate Movement
	Figure 316.3c Diamond-shaped Lithography Image

	316.4 Procedures to Perform NanoLithography
	316.4.1 What You Will Need
	316.4.2 Testing Your System [LithoHelloWorld.dll]
	Figure 316.4a C++ Compiler File View
	Figure 316.4b C/C++ Tab
	Figure 316.4c Project Properties Dialog Box
	Figure 316.4d Link Tab
	Figure 316.4e Build Window
	Figure 316.4f Lithography DLL Files
	Figure 316.4g LithoHelloWorld Dialog Box

	316.4.3 Testing Your System [Diamond.dll]
	Figure 316.4h Diamond Test Program

	316.4.4 Modifying a Lithography Program
	Figure 316.4i Modified Source Code
	Figure 316.4j LithoTranslate Movement
	Figure 316.4k Diamond-shaped Lithography Image

	316.4.5 Writing a New Lithography Program
	Figure 316.4l New Project Dialog Box
	Figure 316.4m New DLL Wizard Dialog Box
	Figure 316.4n New Project Information
	Figure 316.4o New Workspace
	Figure 316.4p New Source Files
	Figure 316.4q Build Window

	316.4.6 Exporting Older Programs into Version 5.12 or Later
	Figure 316.4r Sample of Changes to Older Lithography Programs

	316.4.7 Performance Tips

	316.5 Sample Programs Overview
	316.5.1 Sample #1: LithoHelloWorld
	Figure 316.5a LithoHelloWorld Code

	316.5.2 Sample #2: Diamond
	Figure 316.5b Diamond Lithography Code
	Figure 316.5c LithoTranslate Movement

	316.5.3 Sample #3: DiamondGUI
	Figure 316.5d DiamondGUI Macro Code

	316.6 NanoScript Macros
	316.6.1 Background

	316.7 Litho.h Functions
	316.7.1 LithoAbort
	316.7.2 LITHO_BEGIN
	316.7.3 LITHO_END
	316.7.4 LithoDisplayStatusBox
	316.7.5 LithoRemoveStatusBox
	316.7.6 LithoFeedback
	316.7.7 LithoSignal
	Table 316.7a LithoSignal Analog Lines

	316.7.8 LithoGet
	316.7.9 LithoGetSoft
	316.7.10 LithoMoveZ
	316.7.11 LithoPause
	316.7.12 LithoPulse
	316.7.13 LithoRamp
	316.7.14 LithoRelease
	316.7.15 LithoSet
	316.7.16 LithoSetSoft
	316.7.17 LithoTranslate
	316.7.18 LithoTrigger
	Table 316.7a TriggerLine Analog Lines

	316.7.19 LithoWaitFor

	316.8 Gui.h Functions
	316.8.1 AddButton
	316.8.2 AddCheckBox
	316.8.3 AddFloatControl
	316.8.4 AddIntControl
	316.8.5 AddMenuItem
	316.8.6 AddRadioButton
	316.8.7 AddRadioGroup
	316.8.8 AddStringEntry
	316.8.9 Askxxxx: The Ask Group
	316.8.10 AtMenuBuild
	316.8.11 ClearMenuBar
	316.8.12 CustomMenuBar
	316.8.13 Debug
	316.8.14 DelMenuItem
	316.8.15 EraseMessage
	316.8.16 FindMenuItem
	316.8.17 IsMessageBoxUp
	316.8.18 LockGUI
	316.8.19 LockMenu
	316.8.20 ModalDialog
	316.8.21 NormalMenuBar
	316.8.22 PasswordQuery
	316.8.23 RemoveSayBox
	316.8.24 RunDialog
	316.8.25 SayError
	316.8.26 SayMessage
	316.8.27 SayWarning
	316.8.28 SelectRadioButton
	316.8.29 ShowMessage
	316.8.30 UnlockGUI
	316.8.31 UnlockMenu

